
Forecasting risk with Markov–switching GARCH models:
A large–scale performance studyI

David Ardiaa,b,∗, Keven Bluteaua,c, Kris Boudtc,d, Leopoldo Cataniae

a
Institute of Financial Analysis, University of Neuchâtel, Neuchâtel, Switzerland

b
Department of Finance, Insurance and Real Estate, Laval University, Québec City, Canada
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1. Introduction

Under the regulation of the Basel Accords, risk managers of financial institutions need to rely

on state–of–the–art methodologies for monitoring financial risks (Board of Governors of the Federal

Reserve Systems, 2012). Clearly, the use of a regime–switching time–varying volatility model and

Bayesian estimation methods can be considered to be state–of–the–art, but many academics and

practitioners also consider the single–regime volatility model and the use of frequentist estimation

via Maximum Likelihood (ML) as state–of–the–art. Risk managers disagree whether the compu-

tational complexity of a regime–switching model and the Bayesian estimation method pay off in

terms of a higher accuracy of their financial risk monitoring system. We study this question for

monitoring the individual risks of a large number of financial assets.

Among the various building–blocks of any risk management system, the specification of the

conditional volatility process is key, especially for short–term horizons (McNeil et al., 2015). Re-

search on modeling volatility using time series models has proliferated since the creation of the

original ARCH model by Engle (1982) and its generalization by Bollerslev (1986). From there,

multiple extensions of the GARCH scedastic function have been proposed to capture additional

stylized facts observed in financial markets, such as nonlinearities, asymmetries, and long–memory

properties; see Engle (2004) for a review. These so–called GARCH–type models are today essential

tools for risk managers.

An appropriate risk model should be able to accommodate the properties of financial returns.

Recent academic studies show that many financial assets exhibit structural breaks in their volatility

dynamics and that ignoring this feature can have large effects on the precision of the volatility

forecast (see, e.g., Lamoureux and Lastrapes, 1990; Bauwens et al., 2014). As noted by Danielsson

(2011), this shortcoming in the individual forecasting systems can have systemic consequences. He

refers to these single–regime volatility models as one of the culprits of the great financial crisis:

“(...) the stochastic process governing market prices is very different during times of stress compared

to normal times. We need different models during crisis and non–crisis and need to be careful in

drawing conclusions from non–crisis data about what happens in crises and vice versa”.

A way to address the switch of model’s behavior is provided by Markov–switching GARCH
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models (MSGARCH) whose parameters can change over time according to a discrete latent (i.e.,

unobservable) variable. These models can quickly adapt to variations in the unconditional volatility

level, which improves risk predictions (see, e.g., Marcucci, 2005; Ardia, 2008).

Initial studies on Markov–switching autoregressive heteroscedastic models applied to financial

times series focus on ARCH specifications and thus omit a lagged value of the conditional variance

in the variance equation (Cai, 1994; Hamilton and Susmel, 1994). The use of ARCH instead of

GARCH dynamics leads to computational tractability in the likelihood calculation. Indeed, Gray

(1996) shows that, given a Markov chain with K regimes and T observations, the evaluation of the

likelihood of a Markov–switching model with general GARCH dynamics requires the integration

over all KT possible paths, rendering the estimation infeasible. While this difficulty is not present

in ARCH specifications, the use of lower order GARCH models tends to offer a more parsimonious

representation than higher order ARCH models. Gray (1996), Dueker (1997) and Klaassen (2002)

tackle the path dependence problem of MSGARCH through approximation, by collapsing the past

regime–specific conditional variances according to ad–hoc schemes.1 An alternative approach is

provided by Haas et al. (2004), who let the GARCH processes of each state evolve in parallel

and thus independently of the GARCH process in the other states. Besides avoiding the path

dependence problem, their model allows for a clear–cut interpretation of the variance dynamics in

each regime. In our study, we consider the model by Haas et al. (2004) for these reasons.

The first contribution of our paper is to test if, indeed, MSGARCH models provide risk managers

with useful tools that can improve their volatility forecasts.2 To answer this question, we perform

a large–scale empirical analysis in which we compare the risk forecasting performance of single–

1
Also more recent studies address this problem; for instance, Augustyniak (2014) relies on a Monte Carlo EM

algorithm with importance sampling.
2
Our study focuses exclusively on GARCH and MSGARCH models. GARCH is the workhorse model in financial

econometrics and has been investigated for decades. It is widely used by practitioners and academics; see for instance
Bams et al. (2017) and Herwartz (2017). MSGARCH is the most natural and straightforward extension to GARCH.
Alternative conditional volatility models include stochastic volatility models (Taylor, 1994; Jacquier et al., 1994),
realized measure–based conditional volatility models such as HEAVY (Shephard and Sheppard, 2010) or Realized
GARCH (Hansen et al., 2011), or even combinations of these (Opschoor et al., 2017). Note finally that our study only
considers the (1,1)–lag specification for the GARCH and MSGARCH models. While there is a clear computational
cost of considering higher orders for (MS)GARCH model specifications, the payoff in terms of improvement in
forecasting precision may be low. In fact, several studies have shown that increasing the orders does not lead to a
substantial improvement of the forecasting performance in case of predicting the conditional variance of asset returns
(see, e.g., Hansen and Lunde, 2005). We leave all these investigations for further research.
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regime and Markov–switching GARCH models. We take the perspective of a risk manager working

for a fund manager and conduct our study on the daily, weekly and ten–day log–returns of a large

universe of stocks, equity indices, and foreign exchange rates. Thus, in contrast to Hansen and

Lunde (2005), who compare a large number of GARCH–type models on a few series, we focus on a

few GARCH and MSGARCH models and a large number of series. For single–regime and Markov–

switching specifications, the scedastic specifications we consider account for different reactions of

the conditional volatility to past asset returns. More precisely, we consider the symmetric GARCH

model (Bollerslev, 1986) as well as the asymmetric GJR model (Glosten et al., 1993). These

scedastic specifications are integrated into the MSGARCH framework with the approach of Haas

et al. (2004). For the (regime–dependent) conditional distributions, we use the symmetric and the

Fernández and Steel (1998) skewed versions of the Normal and Student–t distributions. Overall,

this leads to sixteen models.

Our second contribution is to test the impact of the estimation method on the performance of

the volatility forecasting model. GARCH and MSGARCH models are traditionally estimated with

a frequentist (typically via ML) approach; see Haas et al. (2004), Marcucci (2005) and Augusty-

niak (2014). However, several recent studies have argued that a Bayesian approach offers some

advantages. For instance, Markov chain Monte Carlo (MCMC) procedures can explore the joint

posterior distribution of the model parameters, and parameter uncertainty is naturally integrated

into the risk forecasts via the predictive distribution (Ardia, 2008; Bauwens et al., 2010, 2014;

Geweke and Amisano, 2010; Ardia et al., 2017c).

Combining the sixteen model specifications with the frequentist and Bayesian estimation meth-

ods, we obtain 32 possible candidates for the state–of–the–art methodology for monitoring financial

risk. We use an out–of–sample evaluation period of 2,000 days, that ranges from (approximately)

2005 to 2016 and consists of daily log–returns. We evaluate the accuracy of the risk prediction

models in terms of estimating the Value–at–Risk (VaR), the Expected Shortfall (ES), and the

left–tail (i.e., losses) of the conditional distribution of the assets’ returns.

Our empirical results suggest a number of practical insights which can be summarized as follows.

First, we find that MSGARCH models report better VaR, ES, and left–tail distribution forecasts
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than their single–regime counterpart. This is especially true for stock return data. Moreover,

improvements are more pronounced when the Markov–switching mechanism is applied to simple

specifications such as the GARCH–Normal model. Second, accounting for parameter uncertainty

improves the accuracy of the left–tail predictions, independently of the inclusion of the Markov–

switching mechanism. Moreover, larger improvements are observed in the case of single–regime

models. Overall, we recommend risk managers to rely on more flexible models and to perform

inference accounting for parameter uncertainty.

In addition to showing the good performance of MSGARCH models and Bayesian estimation

methods, we refer risk managers to our R package MSGARCH (Ardia et al., 2017a,b), which im-

plements MSGARCH models in the R statistical language with efficient C++ code.3 We hope

that this paper and the accompanying package will encourage practitioners and academics in the

financial community to use MSGARCH models and Bayesian estimation methods.

The paper proceeds as follows. Model specification, estimation, and forecasting are presented

in Section 2. The datasets, the testing design, and the empirical results are discussed in Section 3.

Section 4 concludes.

2. Risk forecasting with Markov–switching GARCH models

A key aspect in quantitative risk management is the modeling of the risk drivers of the securities

held by the fund manager. We consider here the univariate parametric framework, that computes

the desired risk measure in four steps. First, a statistical model which describes the daily log–

returns (profit and loss, P&L) dynamics is determined. Second, the model parameters are estimated

for a given estimation window. Third, the one/multi–day ahead distribution of log–returns is

obtained (either analytically or by simulation). Fourth, relevant risk measures such as the Value–

at–Risk (VaR) and the Expected Shortfall (ES) are computed from the distribution. The VaR

represents a quantile of the distribution of log–returns at the desired horizon, and the ES is the

expected loss when the loss exceeds the VaR level (Jorion, 2006). Risk managers can then allocate

3
Our research project was funded by the 2014 SAS/IIF forecasting research grant, to compare MSGARCH vs.

GARCH models, and to develop and render publicly available the computer code for the estimation of MSGARCH
models.
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risk capital given their density or risk measure forecasts. Also, they can assess the quality of the

risk model, ex–post, via statistical procedures referred to as backtesting.

2.1. Model specification

We define yt ∈ R as the (percentage point) log–return of a financial asset at time t. To simplify

the exposition, we assume that the log–returns have zero mean and are not autocorrelated.4 The

general Markov–switching GARCH specification can be expressed as:

yt | (st = k, It−1) ∼ D(0, hk,t, ξk) , (1)

where D(0, hk,t, ξk) is a continuous distribution with zero mean, time–varying variance hk,t, and

additional shape parameters (e.g., asymmetry) gathered in the vector ξk.
5 Furthermore, we as-

sume that the latent variable st, defined on the discrete space {1, . . . ,K}, evolves according to

an unobserved first order ergodic homogeneous Markov chain with transition probability ma-

trix P ≡ {pi,j}
K
i,j=1, with pi,j ≡ P[st = j | st−1 = i]. We denote by It−1 the information set

up to time t − 1, that is, It−1 ≡ {yt−i, i > 0}. Given the parametrization of D(·), we have

E[y2t | st = k, It−1] = hk,t, that is, hk,t is the variance of yt conditional on the realization of st and

the information set It−1.

As in Haas et al. (2004), the conditional variance of yt is assumed to follow a GARCH–type

model. More precisely, conditionally on regime st = k, hk,t is specified as a function of past returns

and the additional regime–dependent vector of parameters θk:

hk,t ≡ h(yt−1, hk,t−1,θk) ,

where h(·) is a It−1–measurable function, which defines the filter for the conditional variance and

also ensures its positiveness. We further assume that hk,1 ≡ h̄k (k = 1, . . . ,K), where h̄k is a fixed

initial variance level for regime k, that we set equal to the unconditional variance in regime k.

4
In practice, this means that we apply the (MS)GARCH models to de–meaned log–returns, as explained in

Section 3.
5
For t = 1, we initialize the regime probabilities and the conditional variances at their unconditional levels. To

simplify exposition, we use henceforth for t = 1 the same notation as for general t, since there is no confusion possible.
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Depending on the form of h(·), we obtain different scedastic specifications. For instance, if:

hk,t ≡ ωk + αky
2
t−1 + βkhk,t−1 ,

with ωk > 0, αk > 0, βk ≥ 0 and αk + βk < 1 (k = 1, . . . ,K), we obtain the Markov–switching

GARCH(1, 1) model presented in Haas et al. (2004).6 In this case θk ≡ (ωk, αk, βk)
′.

Alternative definitions of the function h(·) can be easily incorporated in the model. For instance,

to account for the well–known asymmetric reaction of volatility to the sign of past returns (often

referred to as the leverage effect ; see Black 1976), we specify a Markov–switching GJR(1, 1) model

exploiting the volatility specification of Glosten et al. (1993):

hk,t ≡ ωk + (αk + γkI{yt−1 < 0}) y2t−1 + βkhk,t−1 ,

where I{·} is the indicator function, that is equal to one if the condition holds, and zero other-

wise. In this case, the additional parameter γk ≥ 0 controls the asymmetry in the conditional

variance process. We have θk ≡ (ωk, αk, γk, βk)
′. Covariance–stationarity of the variance pro-

cess conditionally on the Markovian state is achieved by imposing αk + βk + κkγk < 1, where

κk ≡ P[yt < 0 | st = k, It−1]. For symmetric distributions we have κk = 1/2. For skewed distribu-

tions, κk is obtained following the approach of Trottier and Ardia (2016).

We consider different choices for D(·). We take the standard Normal (N ) and the Student–t

(S) distributions. To investigate the benefits of incorporating skewness in our analysis, we also

consider the standardized skewed version of N and S obtained using the mechanism of Fernández

and Steel (1998) and Bauwens and Laurent (2005); see Trottier and Ardia (2016) for more details.

We denote the standardized skew–Normal and the skew–Student–t by skN and skS, respectively.

Overall, our model set includes 16 different specifications recovered as combinations of:

� The number of regimes, K ∈ {1, 2}. When K = 1, we label our specification as single–regime

(SR), and, when K = 2, as Markov–switching (MS);

6
We require that the conditional variance in each regime is covariance–stationary. This is a stronger condition

than in Haas et al. (2004), but this allows us to ensure stationarity for various forms of conditional variance and/or
conditional distributions.
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� The conditional variance specification: GARCH(1, 1) and GJR(1, 1);

� The choice of the conditional distribution D(·), that is, D ∈ {N ,S, skN , skS}.7

2.2. Estimation

We estimate the models either through frequentist or Bayesian techniques. Both approaches

require the evaluation of the likelihood function.

In order to write the likelihood function corresponding to the MSGARCH model specifica-

tion (1), we regroup the model parameters into Ψ ≡ (ξ1,θ1, . . . , ξK ,θK ,P). The conditional

density of yt in state st = k given Ψ and It−1 is denoted by fD(yt | st = k,Ψ, It−1).

By integrating out the state variable st, we obtain the density of yt given Ψ and It−1 only. The

(discrete) integration is obtained as follows:

f(yt |Ψ, It−1) ≡
K∑
i=1

K∑
j=1

pi,j ηi,t−1 fD(yt | st = j,Ψ, It−1) , (2)

where ηi,t−1 ≡ P[st−1 = i |Ψ, It−1] is the filtered probability of state i at time t− 1 and where we

recall that pi,j denotes the transition probability of moving from state i to state j. The filtered

probabilities {ηk,t; k = 1, . . . ,K; t = 1, . . . , T} are obtained via the Hamilton filter; see Hamilton

(1989) and Hamilton (1994, Chapter 22) for details.

Finally, the likelihood function is obtained from (2) as follows:

L(Ψ | IT ) ≡
T∏
t=1

f(yt |Ψ, It−1) . (3)

The ML estimator Ψ̂ is obtained by maximizing the logarithm of (3). In the case of the Bayesian

estimation, the likelihood function is combined with a prior f(Ψ) to build the kernel of the posterior

7
We also tested the asymmetric EGARCH scedastic specification (Nelson, 1991) as well as alternative fat–tailed

distributions, such as the Laplace and GED distributions. The performance results were qualitatively similar.
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distribution f(Ψ | IT ).8 As the posterior is of an unknown form (the normalizing constant is

numerically intractable), it must be approximated by simulation techniques. In our case, MCMC

draws from the posterior are generated with the adaptive random–walk Metropolis sampler of

Vihola (2012). We use 50,000 burn–in draws and build the posterior sample of size 1,000 with

the next 50,000 draws keeping only every 50th draw to diminish the autocorrelation in the chain.9

For both the frequentist and the Bayesian estimation, we ensure positivity and stationarity of the

conditional variance in each regime during the estimation. Moreover, we impose constraints on

the parameters to ensure that volatilities under the MSGARCH specification cannot be generated

by a single–regime specification. In the case of the frequentist estimation, these constraints are

enforced in the likelihood optimization by using mapping functions. For the Bayesian estimation,

this is achieved through the prior.

2.3. Density and downside risk forecasting

Generating one–step ahead density and downside risk forecasts (VaR and ES) with MSGARCH

models is straightforward. First, note that the one–step ahead conditional probability density

function (PDF) of yT+1 is a mixture of K regime–dependent distributions:

f(yT+1 |Ψ, IT ) ≡
K∑
k=1

πk,T+1fD(yT+1 | sT+1 = k,Ψ, IT ) , (4)

8
We build our prior from diffuse independent priors as follows:

f(Ψ) ∝ f(θ1, ξ1) · · · f(θK , ξK)f(P) I{h̄1 < · · · < h̄K}
f(θk, ξk) ∝ f(θk)f(ξk) I{(θk, ξk) ∈ CSCk} (k = 1, . . . ,K)

f(θk) ∝ fN (θk; 0, 1,000×I) I{θk > 0} (k = 1, . . . ,K)

f(ξk) ∝ fN (ξk; 0, 1,000×I) I{ξk,1 > 0, ξk,2 > 2} (k = 1, . . . ,K)

f(P) ∝
K∏
i=1

(
K∏
j=1

pi,j

)
I{0 < pi,i < 1} ,

where 0 and I denote a vector of zeros and an identity matrix of appropriate sizes, fN (•;µ,Σ) is the multivariate
Normal density with mean vector µ and covariance matrix Σ, ξk,1 is the asymmetry parameter, and ξk,2 the tail
parameter of the skewed Student–t distribution in regime k. Moreover, h̄k ≡ h̄k(θk, ξk) is the unconditional variance
in regime k and CSCk denotes the covariance–stationarity condition in regime k; see Trottier and Ardia (2016).

9
We performed several sensitivity analyses to assess the impact of the estimation’s setup. First, we changed the

hyper–parameter values. Second, we ran longer MCMC chains. Third, we used 10,000 posterior draws instead of
1,000. Finally, we tested an alternative MCMC sampler based on adaptive mixtures of Student–t distribution (Ardia
et al., 2009). In all cases, the conclusions remained qualitatively similar.
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with mixing weights πk,T+1 ≡
∑K

i=1 pi,kηi,T where ηi,T ≡ P[sT = i |Ψ, IT ] (i = 1, . . . ,K) are the

filtered probabilities at time T . The cumulative density function (CDF) is obtained from (4) as

follows:

F (yT+1 |Ψ, IT ) ≡
∫ yT+1

−∞
f(z |Ψ, IT )dz . (5)

Within the frequentist framework, the predictive PDF and CDF are simply computed by replacing

Ψ by the ML estimator Ψ̂ in (4) and (5). Within the Bayesian framework, we proceed differently,

and integrate out the parameter uncertainty. Given a posterior sample {Ψ[m],m = 1, . . . ,M}, the

predictive PDF is obtained as:

f(yT+1 | IT ) ≡
∫
Ψ
f(yT+1 |Ψ, IT )f(Ψ | IT )dΨ ≈ 1

M

M∑
m=1

f(yT+1 |Ψ
[m], IT ) . (6)

The predictive CDF is given by:

F (yT+1 | IT ) ≡
∫ yT+1

−∞
f(z | IT )dz . (7)

For both estimation approaches, the VaR is estimated as a quantile of the predictive density, by

numerically inverting the predictive CDF. For instance, in the Bayesian framework, the VaR at

the α risk level equals:

VaRα
T+1 ≡ inf {yT+1 ∈ R |F (yT+1 | IT ) = α} , (8)

while the ES at the α risk level is given by:

ESαT+1 ≡
1

α

∫ VaR
α
T+1

−∞
zf(z|IT )dz . (9)

In our empirical application, we consider the VaR and the ES at the 1% and 5% risk levels.

For evaluating the risk at an h–period horizon, we must rely on simulation techniques to obtain

the conditional density and downside risk measures, as described, for instance, in Blasques et al.

(2016). More specifically, given a MSGARCH model parameter Ψ, we generate 25,000 paths of
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daily log–returns over a horizon of h days.10 The simulated distribution and the obtained α–

quantile then serve as estimates of the density and downside risk forecasts of the h–day cumulative

log–return.

3. Large–scale empirical study

We use 1,500 log–returns (in percent) for the estimation and run the backtest over 2,000 out–

of–sample log-returns for a period ranging from October 10, 2008, to November 17, 2016 (the full

dataset starts on December 26, 2002). Each model is estimated on a rolling window basis, and

one–step ahead as well as multi–step cumulative log–returns density forecasts are obtained.11 From

the estimated density, we compute the VaR and the ES at the 1% and 5% risk levels.

3.1. Datasets

We test the performance of the various models on several universes of securities typically traded

by fund managers:

� A set of 426 stocks, selected by taking the S&P 500 universe index as of November 2016,

and omitting the stocks for which more than 5% of the daily returns are zero, and stocks for

which there are less than 3,500 daily return observations.

� A set of eleven stock market indices: (1) S&P 500 (US; SPX), (2) FTSE 100 (UK; FTSE),

(3) CAC 40 (France; FCHI), (4) DAX 30 (Germany; GDAXI), (5) Nikkei 225 (Japan; N225),

(6) Hang Seng (China, HSI), (7) Dow Jones Industrial Average (US; DJI), (8) Euro Stoxx 50

(Europe; STOXX50), (9) KOSPI (South Korea; KS11), (10) S&P/TSX Composite (Canada;

GSPTSE), and (11) Swiss Market Index (Switzerland; SSMI);

10
With the frequentist estimation, we generate 25,000 paths with parameter Ψ̂, while in the case of the Bayesian

estimation, we generate 25 paths for each of the 1,000 value Ψ
[m]

in the posterior sample. We use this number to get
enough draws from the predictive distribution as we focus on the left tail. Geweke (1989) shows that the consistent
estimation of the predictive distribution does not depend on the number of paths generated from the posterior. So
with 25 paths, we indeed converge to the correct predictive distribution. We verified that increasing the number of
simulations has no material impact on the results.

11
Model parameters are updated every ten observations. We selected this frequency to speed up the computations.

Similar results for a subset of stocks were obtained when updating the parameters every day. This is also in line with
the observation of Ardia and Hoogerheide (2014), who show, in the context of GARCH models, that the performance
of VaR forecasts is not significantly affected when moving from a daily updating frequency to a weekly or monthly
updating frequency. Note that while parameters are updated every ten observations, the density and downsides risk
measures are computed every day.
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� A set of eight foreign exchange rates: USD against CAD, DKK, NOK, AUD, CHF, GBP,

JPY, and EUR.12

Data are retrieved from Datastream. Each price series is expressed in local currency. We compute

the daily percentage log–return series defined by xt ≡ 100× log(Pt/Pt−1), where Pt is the adjusted

closing price (value) on day t. We then de–mean the returns xt using an AR(1)–filter, and use

those filtered returns, yt, to estimate and evaluate the precision of the financial risk monitoring

systems.

In Table 1, we report the summary statistics on the out–of–sample daily, five–day, and ten–

day cumulative log–returns for the three asset classes. We report the standard deviation (Std),

the skewness (Skew) and kurtosis (Kurt) coefficients evaluated over the full sample as well as the

historical 1% and 5% VaR and ES levels. We note the higher volatility in all periods for the

universe of stocks, followed by indices and exchange rates. All securities exhibit negative skewness,

with larger values for indices and stocks, while exchange rates seem to behave more symmetrically.

Interestingly, the negative skewness tends to be more pronounced for indices as the horizon grows.

Finally, at the daily horizon, we observe a significant kurtosis for stocks. Fat tails are also present

for indices and exchange rates, but less pronounced than for stocks. However, as the horizon grows,

the kurtosis of all asset classes tends to diminish.

[Insert Table 1 about here.]

3.2. Forecasting performance tests

We compare the adequacy of the 32 models in terms of providing accurate forecasts of the left

tail of the conditional distribution and the VaR and ES levels.

3.2.1. Accuracy of VaR predictions

For testing the accuracy of the VaR predictions, we use the so–called hit variable, which is a

dummy variable indicating a loss that exceeds the VaR level:

Iαt ≡ I{yt ≤ VaRα
t } ,

12
In the context of foreign exchange rates, left–tail forecasts aim at assessing the risk for a foreign investor investing

in USD and therefore facing devaluation of USD.
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where VaRα
t denotes the VaR prediction at risk level α for time t, and I{·} is the indicator function

equal to one if the condition holds, and zero otherwise. If the VaR is correctly specified, then the

hit variable has a mean value of α and is independently distributed over time. We test this for the

α = 1% and α = 5% risk levels using the unconditional coverage (UC) test by Kupiec (1995), and

the dynamic quantile (DQ) test by Engle and Manganelli (2004).

The UC test by Kupiec (1995) uses the likelihood ratio to test that the violations have a

Binomial distribution with E[Iαt ] = α. Denote by x ≡
∑T

t=1 I
α
t the number of observed rejections

on a total of T observations, then, under the null of correct coverage, we have that the test statistic:

UCα ≡ −2 ln
[
(1− α)T−xαx

]
+ 2 ln

[(
1− x

T

)T−x ( x
T

)x]
,

is asymptotically chi–square distributed with one degree–of–freedom.

The DQ test by Engle and Manganelli (2004) is a test of the joint hypothesis that E[Iαt ] = α

and that the hit variables are independently distributed. The implementation of the test involves

the de–meaned process Hitαt ≡ Iαt − α . Under correct model specification, unconditionally and

conditionally, Hitαt has zero mean and is serially uncorrelated. The DQ test is then the traditional

Wald test of the joint nullity of all coefficients in the following linear regression:

Hitαt = δ0 +
L∑
l=1

δlHitαt−l + δL+1VaRα
t−1 + εt .

If we denote the OLS parameter estimates as δ̂ ≡ (δ̂0, . . . , δ̂L+1)
′ and Z as the corresponding data

matrix with, in column, the observations for the L + 2 explanatory variables, then the DQ test

statistic of the null hypothesis of correct unconditional and conditional coverage is:

DQα ≡
δ̂
′
Z′Zδ̂

α(1− α)
.

As in Engle and Manganelli (2004), we choose L = 4 lags. Under the null hypothesis of correct

unconditional and conditional coverage, we have that DQα is asymptotically chi–square distributed
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with L+ 2 degrees of freedom.13

3.2.2. Accuracy of the left–tail distribution

Risk managers care not only about the accuracy of the VaR forecasts but also about the

accuracy of the complete left–tail region of the log–return distribution. This broader view of

all losses is central in modern risk management, and, consistent with the regulatory shift to using

Expected Shortfall as the risk measure for determining capital requirements starting in 2018 (Basel

Committee on Banking Supervision, 2013). We evaluate the effectiveness of MSGARCH models to

yield accurate predictions of the left–tail distribution in three ways.

A first approach is to compute the weighted average difference of the observed returns with

respect to the VaR value, and give higher weight to losses that violate the VaR level. This corre-

sponds to the quantile loss assessment of González-Rivera et al. (2004) and McAleer and Da Veiga

(2008). Formally, given a VaR prediction at risk level α for time t, the associated quantile loss

(QL) is defined as:

QLαt ≡ (α− Iαt )(yt −VaRα
t ) .

The choice of this loss function for VaR assessment is appropriate since quantiles are elicited by it;

that is, when the conditional distribution is static over the sample, the VaRα
t can be estimated by

minimizing the average quantile loss function. Elicitability is useful for model selection, estimation,

forecast comparison, and forecast ranking.

Unfortunately, there is no loss function available for which the ES risk measure is elicitable; see,

for instance, Bellini and Bignozzi (2015) and Ziegel (2016). However, it has been recently shown

by Fissler and Ziegel (2016) (FZ) that, in case of a constant conditional distribution, the couple

(VaR, ES) is jointly elicitable, as the values of vt and et that minimize the sample average of the

following loss function:

FZ(yt, vt, et, α,G1, G2)≡(Iαt − α)

(
G1(vt)−G1(yt) +

1

α
G2(et)vt

)
−G2(et)

(
1

α
Iαt yt − et

)
− G2(et) ,

13
As in Bams et al. (2017), it is possible to add more explanatory variable such as lagged returns and lagged

squared returns and jointly test the new coefficients. In our case, results obtained by adding lagged returns or lagged
squared returns are qualitatively similar to the simpler specification.
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where G1 is weakly increasing, G2 is strictly positive and strictly increasing, and G′2 = G2. In a

similar setup as ours, Patton et al. (2017) assume the values of VaR and ES to be strictly negative

and recommend setting G1(x) = 0 and G2(x) = −1/x. For a VaR and a ES prediction at risk level

α for time t, the associated joint loss function (FZL) is then given by:

FZLαt ≡
1

αESαt
Iαt (yt −VaRα

t ) +
VaRα

t

ESαt
+ log(−ESαt )− 1 , (10)

for ESαt ≤ VaRα
t < 0. Hence, in order to gauge the precision of both the VaR and ES downside risk

estimates, we use the FZL function as our second evaluation criterion.

A third approach that we consider is to compare the empirical distribution with the predicted

conditional distribution through the weighed Continuous Ranked Probability Score (wCRPS), in-

troduced by Gneiting and Ranjan (2011) as a generalization of the CRPS scoring rule (Matheson

and Winkler, 1976). Following the notation introduced in Section 2, the wCRPS for a forecast at

time t is defined as:

wCRPSt ≡
∫
R
ω(z) (F (z | It−1)− I{yt ≤ z})

2 dz ,

where F is the predictive CDF and ω : R→ R+ is a continuous weight function, which emphasizes

regions of interest of the predictive distribution, such as the tails or the center. Since our focus is

on predicting losses, we follow Gneiting and Ranjan (2011) and use the decreasing weight function

ω(z) ≡ 1−Φ(z), where Φ is the CDF of a standard Gaussian distribution. This way, discrepancies

in the left tail of the return distribution are weighed more than those in the right tail.14

For the QL, FZL and wCRPS approaches, we test the statistical significance of the differences

in the forecasting performance of two competing models, say models i and j. We do this by first

14
We follow the implementation of Gneiting and Ranjan (2011) and compute wCRPS with the following approxi-

mation:

wCRPSt ≈
zu − zl
M − 1

M∑
m=1

w(zm) (F (zm | It−1)− I{yt ≤ zm})
2
,

where zm ≡ zl+m×(zu−zl)/M and zu and zl are the upper and lower values, which defines the range of integration.
The accuracy of the approximation can be increased to any desired level by M . Setting zl = −100, zu = 100 and
M = 1,000 provides an accurate approximation when working with returns in percentage points. We also tested the
triangular integration approach and results were numerically equivalent. Alternative weights specifications, focusing
on the right tail, center, of full distribution, lead to similar conclusions at the one–day forecasting horizon. The
results are available from the authors upon request.
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computing, for each out–of–sample date t, the average performance statistics across all securities in

the same asset class. Denote this difference as ∆i−j
t ≡ Lit−L

j
t , where Lit is the average value of the

performance measure (QL, FZL or wCRPS) of all assets within the same asset class. We then test

H0 : E[∆i−j
t ] = 0 using the standard Diebold and Mariano (1995) (DM) test statistic, implemented

with the heteroscedasticity and autocorrelation robust (HAC) standard error estimators of Andrews

(1991) and Andrews and Monahan (1992). If the null hypothesis is rejected, the sign of the test

statistics indicates which model is, on average, preferred for a particular loss measure.

3.3. Results

We now summarize the results regarding our main research question: Does the additional

complexity of Markov–switching and the use of Bayesian estimation methods lead to more accurate

out–of–sample downside risk predictions? We first present our results regarding the accuracy of

the VaR predictions and then use the QL, FZL and wCRPS approaches to evaluate the gains in

terms of left–tail predictions.

3.3.1. Effect of model and estimator choice on the accuracy of VaR predictions

We first use the UC test of Kupiec (1995) and the DQ test of Engle and Manganelli (2004) to

evaluate the accuracy of each of the 32 methods considered in terms of predicting the VaR at the

5% and 1% level for the daily returns on the 426 stocks, 11 stock indices and 8 exchange rates.

For each asset, we obtain the p–value corresponding to the UC and DQ test computed using 2,000

out–of–sample observations. In Table 2, we aggregate the results per asset class by presenting the

percentage of assets for which the null hypothesis of correct unconditional and conditional coverage

is rejected at the 5% level, by the UC and DQ test, respectively.15

[Insert Table 2 about here.]

15
In the case of stocks, as the universe is large and therefore prone to false positives, the p–values are corrected for

Type I error using the false discovery rate (FDR) approach of Benjamini and Hochberg (1995). The FDR correction
for a confidence level q proceeds as follows. For a set of m ordered p–values p1 ≤ p2 ≤ . . . ≤ pm and corresponding
null hypotheses H1, H2, . . . , Hm, define v as the largest value of i for which pi ≤ i

m
q, and the reject all hypotheses

Hi for i = 1, . . . , v.
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Consider in Panels A and B of Table 2 the results for the UC test. At both VaR risk levels,

we find that the validity of the VaR predictions based on the GARCH and GJR skewed Student–t

risk model is never rejected, whatever the use of SR or MS models, or frequentist or Bayesian

estimation methods. The result changes drastically when we consider the more powerful DQ test

of correct conditional coverage in Panels C and D. Here, we find clear evidence that the use of MS

GJR models leads to a lower percentage of rejections of the validity of the VaR prediction for all

asset classes. At the 1% risk level, these differences are most often significant.

Overall, the one–day ahead backtest results indicate outperformance of MS over SR models,

especially for VaR prediction on equities. Moreover, a GJR specification leads to a substantial

reduction in the rejection frequencies. Both for MS and SR specifications, a fat–tailed conditional

distribution is of primary importance and delivers excellent results at both risk levels.

Finally, for this analysis, the frequency of rejections are similar between the Bayesian and

frequentist estimation methods. More precisely, a t–test for equal average rejections indicates that

differences are insignificant. We thus conclude that, based on the analysis of VaR forecast accuracy,

it is hard to discriminate between the estimation methods.

3.3.2. Effect of model choice on accuracy of left–tail predictions

A further question is how model simplification affects the accuracy of the left–tail return predic-

tion. In Table 3, we report the standardized difference between the average QL, FZL and wCRPS

values of the assets belonging to the same asset class, when we switch from a MS specification

to a SR specification. The standardization corresponds to the Diebold and Mariano (1995) (DM)

test statistic. Negative values indicate out–of–sample evidence of a deterioration in the prediction

accuracy when using the SR specification instead of the MS specification. When the standardized

value exceeds 2.57 (i.e., the critical value computed using a 1% significance level for a bilateral

test based on the asymptotic Normal distribution) in absolute value, the statistical significance is

highlighted with a gray shading.16 We report results obtained with the Bayesian framework only,

16
We take the standard critical value in Diebold and Mariano (1995) as our Markov–switching specifications do

not nest the alternative single–regime model due to parameter constraints imposing that the volatility dynamics are
numerically different in each regime, and that each regime has a non–zero probability. The approach by Clark and
McCracken (2001) should be used when comparing nested models.
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as the performance obtained with the Bayesian estimation is better for both MS and SR models

(especially for SR specifications) compared with the frequentist estimation.17

[Insert Table 3 about here.]

One–step ahead results for wCRPS favor MS models with negative values observed for almost

all asset classes and model specifications. QL, FZL and wCRPS results are consistent with the

backtest results: They confirm the superior performance of the MS specification for the universe

of stocks, while outperformance is less clear for indices and exchange rates. Indeed, for indices,

MS is required only when a non fat–tailed conditional distribution is assumed, while for exchange

rates, MS is generally not required. Note that, for all assets, the improvements tend to be more

pronounced when the Markov–switching mechanism is applied to simple specifications such as the

GARCH–Normal model.

For stocks, the MS specification significantly outperforms in terms of the FZL and wCRPS

measures at the five–day horizon. For the wCRPS measure at the ten–day horizon, and for the

QL measure at the five– and ten–day horizons, results are mostly insignificant, except for the FZL

5% measure, which favors MS models when a non fat–tailed conditional distribution is assumed.

MS and SR models perform similarly for the five– and ten–day returns on stock indices. Finally,

for exchange rate returns, SR models outperform MS models at the five– and ten–day horizons

according to the QL 1% measure, while the differences in QL 5%, FZL, and wCRPS are insignificant.

It is informative to examine if these gains in forecasting precision are stable across the out–

of–sample window. To determine this, we display in Figure 1 the cumulative wCRPS average

loss differential over the whole out–of–sample period for the best performing specification, the

GJR skewed Student–t model. Interestingly, we find that MSGARCH systematically outperforms

GARCH according to the criteria that are most sensitive to the extreme left tail of the return

distribution, namely the FZL (for α = 1% and α = 5%) and QL (for α = 1%). We also notice

that in these cases the gains of MSGARCH over GARCH increase during the last phase of the

turbulent period 2008–2012. With regards to wCRPS and QL at α = 5%, we find that MSGARCH

17
Hence, our discussion based on Bayesian results is more conservative in the sense that it gives an advantage to

the SR specifications.
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starts outperforming GARCH after the end of the turbulent period 2008–2012. We conjecture that

this improvement in performance can be explained by the lack of flexibility of the single–regime

GARCH specification. As also evident from the first panel of Figure 1, the market volatility

has changed both its unconditional level and its dependence structure between the two periods

2008–2012 and 2012–2015. Since the estimation window is of 1’500 observations (approximately 7

years), observations in the period 2008–2012 affect GARCH predictions for the whole 2012–2015

forecasting period. Differently, MSGARCH allows the volatility process to adapt more rapidly to

changes in regimes, resulting in better risk predictions. This is the case for the first half of the

window, ranging from December 2008 to November 2012 and encompasses the Great Financial

Crisis, but as well for the half of the window, ranging from December 2012 to November 2016 and

follows the crisis; more calm market period.

[Insert Figure 1 about here.]

We now consider in Table 4 a complete comparison of the wCRPS performance of all MS

models (in row) versus all SR models (in column). The elements in the diagonal correspond to

the wCRPS values reported in Table 3. They are informative about the change in wCRPS when

switching from a MS model to a SR model, keeping the same specification for the conditional

variance and distribution. The analysis of the extra–diagonal elements is informative about the

changes in wCRPS when switching from a MS model to a SR model, and changing the specification

of the volatility model or the density function. In this table, an outperforming MS risk model is

a model for which all standardized gains when changing the specification are negative. For almost

all comparisons, this is the case for the MS GJR model with skewed Student–t innovations. The

only exception is for modeling the returns of stock market indices, where it performs similarly as

its SR counterpart.

[Insert Table 4 about here.]

3.3.3. Effect of estimator choice on accuracy of left–tail predictions

In Table 5, we report the results for the Bayesian versus frequentist estimation methods in the

case of one–step ahead QL, FZL and wCRPS measures. Panel A (Panel B) shows the results for
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MS (SR) models, where a negative (positive) value indicates outperformance (underperformance)

of Bayesian against frequentist estimation. In light gray, we emphasize cases of significant outper-

formance of the Bayesian estimation over the frequentist approach. For stocks, the QL 1% and 5%

comparisons indicate that Bayesian is preferred over ML, and it is significant in the majority of

the specifications. The same observation can be made when using the FZL and wCRPS evaluation

criteria. For stock indices and exchange rates, QL, FZL and wCRPS results are in favor of the

Bayesian estimation for both MS and SR models but results are less significant than for stocks.

Overall, we recommend to account for parameter uncertainty especially for stocks data, and when

the interest is on the left tail of the log–returns distribution. The performance gain is especially

large for SR models.

[Insert Table 5 about here.]

3.3.4. Constrained Markov–switching specifications

So far, our empirical results have highlighted the need for a MS mechanism in GARCH–type

models in the case of stocks. We now refine the analysis by examining whether the same gains are

achieved when constraining that the conditional distribution of the MS specifications has the same

shape parameter across the regimes. Hence, we apply the MS mechanism only to the conditional

variance. The objective is to determine whether, in the context of MS models, the switches in the

variance dynamics are the dominant contributor to the gains in risk forecasting accuracy.

In Table 6, we report the performance measures obtained with the constrained MS models for

the various horizons, when models are estimated with the Bayesian approach.18 Results are in line

with the non–constrained case of Table 3, but less significant. Hence, accounting for structural

breaks in only the variance dynamics improves the risk forecasts at the daily, weekly and ten–

day horizons. If we let the shape parameters depend upon the regime, we further improve the

performance.

[Insert Table 6 about here.]

18
Forecasting results obtained via frequentist estimation are qualitatively similar and available from the authors

upon request.
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4. Conclusion

In this paper, we investigate if MSGARCH models provide risk managers with useful tools for

improving the risk forecasts of securities typically hold by fund managers. Moreover, we investigate

if integrating the model’s parameter uncertainty within the forecasts, via the Bayesian approach,

improves predictions. Our results and practical advice can be summarized as follows.

First, risk managers should extend their GARCH–type models with a Markov–switching spec-

ification in case of investment in equities. Indeed, we find that Markov–switching GARCH models

report better Value–at–Risk, Expected Shortfall, and left–tail distribution forecasts than their

single–regime counterpart. This is especially true for stock return data. Moreover, improvements

are more pronounced when the Markov–switching mechanism is applied to simple specifications

such as the GARCH–Normal model.

Second, accounting for parameter uncertainty helps for left–tail predictions independently of

the inclusion of the Markov–switching mechanism. Moreover, larger improvements are observed

when parameter uncertainty is included in single–regime models.

Overall, we recommend risk managers to rely on more flexible models and to perform inference

accounting for parameter uncertainty. To help them implementing these in practice, we have

released the open–source R package MSGARCH; see Ardia et al. (2017a,b).

Our research could be extended in several ways. First, our study considered single–regime

versus two–state Markov–switching specifications. Hence, it would be of interest to see if a third

regime leads to superior performance, and if the optimal number of regimes (according to penal-

ized likelihood information criteria) changes over time and is different across data sets. Second,

additional universes could be considered, such as emerging markets and commodities. Third, one

could extend the set of models and compare the performance of MSGARCH with realized volatil-

ity models such as the HEAVY model of Shephard and Sheppard (2010). Fourth, as suggested

by a referee, it would be interesting to shed light on the parameter configurations for which the

MSGARCH predictions can be expected to yield the higher improvement in risk forecast precision.

An exploratory analysis has shown that a high persistence of at least one state seems needed to

have a substantial difference in precision between MSGARCH and single–regime GARCH downside

21



risk forecasts. A definite answer to this question is beyond the scope of this paper. Finally, our

analysis only considered financial risk monitoring systems for individual financial assets. The new

standard for capital requirements for market risk (Basel Committee on Banking Supervision, 2016)

calls for backtesting at the individual desk level and the aggregate level. For this reason, it would

be interesting to consider also the impact of choices in modeling dependence. Including these

extensions in our current research setup increases further the (already large) number of models

included in the comparison. We leave them as a topic for future work.
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Table 1: Summary statistics of the return data
The table presents the summary statistics of the (de–meaned) h–day cumulative log–returns for securities
in the three asset classes used in our study. We report the standard deviation (Std), the skewness (Skew),
the kurtosis (Kurt), and the 5% and 1% historical VaR and ES, on an unconditional basis for the 2,000
out–of–sample observations. For each statistic, we compute the 25th, 50th and 75th percentiles over the
whole universe of assets.

h Percentile Std Skew Kurt 1% VaR 5% VaR 1% ES 5% ES

Panel A: Stocks (426 series)
25th 1.48 −0.39 6.89 −6.55 −3.44 −9.30 −5.53

1 50th 1.89 −0.13 9.24 −5.23 −2.85 −7.31 −4.50
75th 2.33 0.12 14.10 −4.10 −2.25 −5.68 −3.50

25th 3.29 −0.42 4.93 −14.60 −7.94 −19.14 −12.11
5 50th 4.21 −0.20 5.87 −11.59 −6.55 −14.84 −9.82

75th 5.19 0.01 7.53 −9.15 −5.17 −12.00 −7.71

25th 4.54 −0.49 4.47 −19.99 −10.92 −25.42 −16.54
10 50th 5.76 −0.27 5.30 −15.74 −9.02 −20.28 −13.19

75th 6.98 −0.05 6.92 −12.43 −7.16 −16.08 −10.46

Panel B: Stock market indices (11 series)
25th 1.07 −0.40 6.07 −3.70 −2.37 −4.84 −3.30

1 50th 1.15 −0.23 7.29 −3.39 −1.85 −4.31 −2.78
75th 1.39 −0.17 10.29 −3.05 −1.77 −4.01 −2.58

25th 2.42 −0.55 5.04 −8.38 −5.09 −10.65 −7.30
5 50th 2.54 −0.47 6.18 −7.60 −4.22 −9.85 −6.17

75th 3.09 −0.29 8.22 −6.91 −3.86 −9.22 −5.97

25th 3.29 −0.79 5.47 −12.32 −7.13 −15.96 −10.22
10 50th 3.43 −0.62 6.31 −10.83 −5.70 −13.92 −8.70

75th 4.19 −0.55 7.04 −9.99 −5.19 −12.90 −8.22

Panel C: Exchange rates (8 series)
25th 0.61 −0.53 4.36 −1.73 −1.07 −2.42 −1.60

1 50th 0.62 −0.08 4.51 −1.62 −1.01 −2.10 −1.42
75th 0.77 0.05 11.60 −1.56 −0.95 −1.92 −1.34

25th 1.32 −0.36 3.65 −3.72 −2.39 −5.02 −3.36
5 50th 1.39 −0.05 4.05 −3.48 −2.26 −4.33 −3.03

75th 1.66 0.08 5.91 −3.07 −2.06 −3.82 −2.77

25th 1.85 −0.31 3.36 −5.00 −3.43 −6.99 −4.55
10 50th 1.93 −0.10 3.52 −4.78 −3.04 −5.72 −4.06

75th 2.29 0.13 5.12 −4.64 −2.93 −5.41 −3.94
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Table 2: Percentage of assets for which the validity of the VaR predictions is rejected
The table presents the percentage of assets for which the unconditional coverage test (UC, Panels A and B)
by Kupiec (1995) and the Dynamic Quantile test (DQ, Panels C and D) by Engle and Manganelli (2004)
reject the null hypothesis of correct unconditional coverage (UC, DQ) and independence of violations (DQ)
for the one–step ahead 1%–VaR (Panels A and C) and 5%–VaR (Panels B and D) at the 5% significance
level. The VaR forecasts are obtained for Markov–switching (MS) and single–regime (SR) models for the
various universes (426 stocks, 11 indices, and 8 exchange rates) and estimated via Bayesian or frequentist
techniques. We highlight in gray the best performing method for the cases in which, for a given asset class
and model specification, the percentages of rejections between MS and SR models are significantly different
at the 5% level. In the case of stocks, rejections frequencies are corrected for Type I error using the FDR
approach of Benjamini and Hochberg (1995).

Stocks Stock market indices Exchange rates

Bayesian Frequentist Bayesian Frequentist Bayesian Frequentist

Model MS SR MS SR MS SR MS SR MS SR MS SR

Panel A: UC 1%–VaR
GARCH N 0.00 26.76 0.23 29.34 72.73 90.91 72.73 90.91 25.00 25.00 25.00 25.00
GARCH skN 0.00 8.92 0.23 9.62 9.09 63.64 0.00 63.64 0.00 12.50 0.00 12.50
GARCH S 0.00 0.00 0.00 0.00 54.55 45.45 27.27 27.27 25.00 25.00 25.00 12.50
GARCH skS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GJR N 0.00 16.43 0.00 19.48 54.55 90.91 63.64 90.91 25.00 25.00 25.00 37.50
GJR skN 0.00 3.52 0.00 5.16 0.00 54.55 0.00 45.45 0.00 12.50 0.00 25.00
GJR S 0.00 0.00 0.00 0.00 18.18 36.36 18.18 36.36 12.50 12.50 12.50 12.50
GJR skS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: UC 5%–VaR
GARCH N 0.70 39.20 0.70 38.73 36.36 36.36 27.27 36.36 25.00 50.00 25.00 50.00
GARCH skN 0.00 41.31 0.00 40.38 0.00 0.00 0.00 0.00 12.50 25.00 0.00 25.00
GARCH S 0.94 1.17 0.70 0.70 54.55 54.55 36.36 54.55 25.00 12.50 25.00 12.50
GARCH skS 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GJR N 0.47 38.73 0.47 36.15 18.18 18.18 36.36 27.27 25.00 37.50 25.00 37.50
GJR skN 0.00 40.38 0.00 39.91 0.00 0.00 0.00 0.00 12.50 12.50 0.00 12.50
GJR S 1.64 1.64 0.70 0.47 18.18 27.27 18.18 27.27 37.50 37.50 37.50 37.50
GJR skS 0.00 0.00 0.00 0.00 0.00 18.18 0.00 18.18 0.00 0.00 0.00 0.00

Panel C: DQ 1%–VaR
GARCH N 14.08 53.52 14.32 54.69 63.64 90.91 72.73 90.91 25.00 37.50 12.50 37.50
GARCH skN 14.08 48.36 15.49 50.00 45.45 63.64 45.45 63.64 12.50 37.50 12.50 37.50
GARCH S 19.95 28.64 16.90 29.34 54.55 63.64 63.64 54.55 25.00 25.00 25.00 25.00
GARCH skS 18.31 23.94 17.37 24.18 45.45 45.45 36.36 36.36 12.50 25.00 12.50 25.00
GJR N 5.87 32.39 6.10 34.74 18.18 90.91 36.36 90.91 12.50 37.50 12.50 37.50
GJR skN 5.87 27.00 6.10 28.17 9.09 27.27 9.09 45.45 12.50 25.00 0.00 25.00
GJR S 7.04 10.33 4.46 9.86 18.18 27.27 18.18 18.18 12.50 25.00 12.50 25.00
GJR skS 5.16 10.33 6.57 11.27 0.00 0.00 0.00 0.00 12.50 12.50 12.50 12.50

Panel D: DQ 5%–VaR
GARCH N 3.52 26.29 3.52 25.82 18.18 9.09 36.36 9.09 0.00 0.00 0.00 0.00
GARCH skN 3.52 29.81 2.82 30.05 9.09 9.09 9.09 9.09 0.00 0.00 0.00 0.00
GARCH S 1.64 7.75 1.64 8.92 45.45 54.55 36.36 54.55 0.00 0.00 0.00 0.00
GARCH skS 2.11 6.57 2.82 7.98 9.09 9.09 9.09 9.09 0.00 0.00 0.00 0.00
GJR N 0.00 14.32 0.00 14.55 9.09 9.09 9.09 0.00 0.00 0.00 0.00 0.00
GJR skN 0.00 15.02 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GJR S 0.00 0.00 0.00 1.17 9.09 0.00 9.09 9.09 12.50 12.50 12.50 12.50
GJR skS 0.00 0.70 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4: Standardized gain in average performance when switching from MS to SR and chang-
ing the specification
This table presents the Diebold and Mariano (1995) test statistic of equal average wCRPS between a MS
implementation (in rows) and a SR implementation (in column), for all considered specifications, when
forecasting the distribution of one–day ahead log–returns. We report test statistics computed with robust
HAC standard errors. Negative values indicate outperformance of the Markov–switching specification com-
pared with single–regime models. In light (dark) gray, we report statistics which are significantly negative
(positive) at the 1% level (bilateral test). Models are estimated with the Bayesian approach.

SR GARCH SR GJR

N skN S skS N skN S skS

Panel A: Stocks

MS GARCH

N -9.32 -9.56 3.29 3.30 -6.80 -6.85 3.29 3.38
skN -9.00 -9.25 3.60 3.67 -6.60 -6.65 3.42 3.54
S -9.01 -9.20 -3.41 -2.99 -7.29 -7.36 -0.14 -0.13
skS -8.86 -9.07 -2.92 -2.79 -7.15 -7.22 0.01 0.04

MS GJR

N -10.11 -10.26 0.88 0.93 -9.96 -10.25 3.20 3.18
skN -9.88 -10.06 0.88 0.95 -9.64 -9.94 3.33 3.38
S -9.73 -9.88 -2.92 -2.76 -9.48 -9.68 -5.00 -4.79
skS -9.57 -9.74 -2.46 -2.34 -9.24 -9.46 -3.19 -3.44

Panel B: Stock market indices

MS GARCH

N -4.04 -0.67 3.09 6.00 4.80 7.15 8.15 9.76
skN -5.25 -3.26 -1.04 3.29 3.06 5.46 6.18 8.55
S -5.66 -2.90 -0.17 5.09 3.68 6.13 7.17 9.20
skS -6.08 -4.83 -3.52 0.22 2.00 4.39 4.98 7.71

MS GJR

N -9.65 -7.81 -6.19 -4.26 -4.30 0.33 2.19 4.76
skN -10.39 -9.41 -7.75 -6.35 -5.21 -3.00 -1.80 1.82
S -9.79 -8.28 -6.91 -5.11 -4.66 -1.15 0.11 3.92
skS -10.20 -9.53 -8.29 -7.19 -5.34 -3.80 -2.83 0.47

Panel C: Exchange rates

MS GARCH

N -2.65 -3.49 5.38 3.95 -2.06 -2.74 3.52 2.81
skN -2.00 -3.41 4.86 5.74 -1.53 -2.45 3.44 3.78
S -6.84 -6.53 -2.17 -2.36 -6.09 -6.03 -2.31 -2.45
skS -5.45 -6.29 -0.99 -1.45 -4.81 -5.61 -1.32 -1.73

MS GJR

N -1.71 -2.33 4.40 3.59 -1.64 -2.35 5.32 3.89
skN -1.13 -1.95 4.26 4.53 -1.02 -1.88 4.53 5.14
S -6.02 -6.03 -1.56 -1.68 -6.38 -6.38 -2.35 -2.46
skS -5.05 -5.49 -0.84 -1.21 -5.21 -5.74 -1.35 -1.66
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Figure 1: Cumulative performance
This figure presents the evolution of VIX (the Chicago Board of Exchange’s volatility index) in the top
panel, together with the cumulative loss differentials (QL, FZL and wCRPS) for the 2,000 out–of–sample
observations (ranging from December 2008 to November 2016). The comparison is done between the Markov–
switching and the single–regime GJR skewed Student–t models. A positive value indicates outperformance
of the Markov–switching specification. A positive slope indicates outperformance at the corresponding date.
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